ELECTRONIC SURFACE RECONSTRUCTION IN TIO2 NANO PARTICLES REVEALED BY RESONANT INELASTIC X-RAY SCATTERING

Cheng-Hao Chuang^{+,#}, Per-Anders Glans[#], and Jinghua Guo[#] ⁺Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan [#]Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Titanium dioxide (TiO₂) is one of the photoactive semiconductors studied most frequently in the literature due to its great chemical stability, inexpensive, and nontoxic nature;^[1] in addition to nanoparticles (NPs) synthesis, the quantum states provide the high surface-to-volume ratio, fast charge transport, suitable band-gap energy levels, and photochemical efficiency for variable applications.^[2-4] However, TiO_2 NPs in tens of nanometers scale are in favor of oxygen vacancy and structural defect formation, such as Ti³⁺ site facilitates the self-doping effect within the bandgap, but the mechanism is still under debated. Also the disorder-engineered nanophase is still unknown for the nature of $3d^{1}$ electron correlation, the insulator-metal transition, and ferromagnetism.^[5-7] Indeed, the individual and correlated contribution in Ti and O sites are hardly evaluated for how the Ti³⁺ defect state plays the important role in the electronic and lattice structure of NP TiO₂. Herein we describe the fundamental study of electronic reconstruction of TiO₂ NPs to explore the interaction of 3d orbitals, charge transfer, and lattice with the element resolvability using resonant inelastic soft X ray scattering (RIXS) which is supported by the Synchrotron Radiation Laboratory, ISSP, University of Tokyo. The inelastic energy- and momentum-loss between incident and emitted X-ray are corresponding to the inter- and intra-coupling between electron, spin, orbital, and lattice owing to the dynamical absorption and relaxation process occurred at the intermediate state in RIXS.^[8] Increasing the core hole lifetime by the resonant process, the scattering interaction is of distinct in between electronic coupling around Ti³⁺ defect state.^[9] In our study, we have investigated the role of Ti³⁺ defect state as a new decay channel accessible to the separable Ti and O site through the strongly electron-electron and electron-phonon interactions.

Figure 1: (a) and (b) The energy-loss representation of Ti $L_{\alpha/\beta}$ and O K_{α} emission spectra of NP TiO₂ varied with the energy-dependence probing. The electron-phonon coupling near the elastic peak is manifested as red curves to enhance the delocalized d-d excitations. (c) Oxygen vacancy and its lattice distortion in TiO₂ NPs. (d) Scheme of the d-d excitations models probed by the elastic scattering from O site.

The RIXS spectra recorded at different X-ray excitation energies (A-H), marked in the upper panel of Fig. 1(a)(b), exhibits the RIXS features using the energy-loss representation for the specific energy-loss channels. Figure 1(a) shows the asymmetric shape with a long tail independent of hv_{in} energies (A-H), which is assigned to the phonon dampling while the lifetime of core-level hole state is longer than the vibrational intermediate state.^[10,11] The d-d excitations (black-color dot-line) turn to grow among the phonon decay background (red-color dot-line). For example, a peak at -0.9 eV behind the phonon sideband (A) shifts to -1.5 eV (C), as probing along the Ti- t_{2g} absorption peak. At the valley between t_{2g} and e_g state (E), the double-structure peak excitations show up at an energy-loss difference of -2.6 and -1.1 eV for the inter-transition $(t_{2g}-t_{2g})$ and intra-transition $(t_{2g}-e_g)$.^[12] Actually, the anatase and rutile TiO₂ show an absence of d-d excitation in the RIXS profile owing to $3d^0$ configuration.^[13] Figure 1(b) shows the O K_{α} RIXS profiles varied with different photon energies (1-8). The asymmetric sideband is increased from the symmetric elastic peak among the resonant state of O-2p to Ti-3d t_{2g} state. At the on-resonant point (5), the additional feature at -1.4 eV emerges from the side band of elastic peak (red-color dot-line). Furthermore, move over the peak (6), two features grows up at -1.5 eV and -2.2 eV on the background level of electron-phonon relaxation. At the off-resonant points (7 and 8), the energy-loss profile shows one broadened bump centered at -2.5 eV and the symmetric-shaped elastic peak due to the lower electron-phonon coupling.

The oxygen vacancy introduces a lattice distortion and 3d election redistribution into the Ti^{4+} state of TiO_6 cluster, as exhibited in Fig. 1(c). Thus, the unstable and asymmetric properties imply the phonon relaxation extensively in the lattice structure of Ti^{3+} and O atoms. The on-resonant emission profile at the Ti $L_{\beta}(C)$ is analogous to that of O K_{α} emission (5) mostly because of the strong correlation of O-2p and Ti-t_{2g} coupling. Figure 1(d) describes that the elastic scattering process delivers the emission energy into the inter/intra d-d transition of Ti 3d orbitals by the strong charge transfer coupling of TiO_6^{8-} ligand field. The electron-phonon coupling of the core exciton state is sensitive to the lattice distortion around the excited Ti atom and O atom. Our investigation provides the new understanding for the correlated 3d electrons generated by the oxygen vacancy of NP dimension and enhanced by the strong charge transfer between Ti and O.

REFERENCES

- M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, *Renewable and Sustainable Energy Reviews* 11, 401(2007).
- [2] S.-J. Bao, C.-M. Li, J.-F Zang, X.-Q. Cui, Y. Qian, and J. Guo, Adv. Fun. Mater. 18, 591 (2008).
- [3] Y. S. Hu, L. Kienle, Y.-G. Guo, and J. Maier, Adv. Mater. 18, 1421(2006).
- [4] P. Hartmann, D.-K. Lee, B. M. Smarsly, and J. Janek, ACS Nano 4, 3147(2010).
- [5] W. Hebenstreit, N. Ruzycki, G. S. Herman, Y. Gao, and U. Diebold, *Phys. Rev. B* 62, R16334(2000).
- [6] J. Tao and M. Batzill, J. Phy. Chem. Lett. 1, 3200(2010).
- [7] B. Choudury and A. Choudhury, J. Appl. Phys. 114, 203906(2013)
- [8] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, *Rev. Mod. Phys.* 83, 705(2011).
- [9] S. Eisebitt and W. Eberhardt, J. Electron. Spectrosc. Related. Phenom. 110-111, 335(2000).
- [10] G. D. Mahan, *Phys. Rev. B* 15, 4587(1977).
- [11] P. Skytt, N. Wassdahl, P. Glans, D.C. Mancini, J. Guo, and J. Nordgren, *Phys. Rev. Lett.* 71, 3725(1993).
- [12] J.-H. Guo, Int. J. Quantum Chem. 109, 2714(2009).
- [13] Y. Harada, T. Kinugasa, R. Eguchi, M. Matsubara, A. Kotani, M. Watanabe, A. Yagishita, and S. Shin, *Phys. Rev. B* 61, 12854(2000).